

 The content of this documentation is no longer maintained! The repository serves only as a reference.
The functionalities of PARAPROBE have been extended and ported into a new modularized tool, the paraprobe-toolbox.
The documentation for this tool is hosted here: http://paraprobe-toolbox.readthedocs.io/en/latest/

Index

In a nutshell

What is PARAPROBE?

A software for data mining Atom Probe Tomography (APT) experiment data. It sets prime focus on

applying scalable hierarchical parallelism to spatial range querying, clustering, atom probe

crystallography, and computational geometry tasks making use of scalable hierarchical parallelism.

What are the user benefits?

Open source software

Therefore no usage restriction, unlimited licences when running in parallel

surplus full functional transparency and modifiability.

Reduced analysis bias

Enabled by state of the art tip surface reconstruction surplus ion to surface distancing.

Scalable performance, large datasets

Thanks to parallel implementation with rigorous hierarchical spatial data partitioning

strategy to improve the utilization of fast caches and ccNUMA-aware data placement policy.

Which parallelization concepts are employed?

Process data parallelism via the Message Passing Interface (MPI_) API
PARAPROBE processes each individual measurement through a single process. This enables to either distribute parameter sweeping studies of the same tip on practically hundred thousands of processes or to process trivially in parallel multiple tips using the same automatized analysis protocol. At runtime, MPI invokes library calls to communicate pieces of information between physically disjoint computers if necessary.
As MPI is a library, it requires installation and linking.

Shared memory thread data parallelism via the Open Multi-Processing (OpenMP_) API.
PARAPROBE partitions the point data of each measurement into spatially disjoint chunks. Explicit strategies are applied to map and place the data chunks in thread-local memory to reduce false sharing and performance degradation on resources with multiple ccNUMA layers. OpenMP builds on preprocessor directives through which the corresponding pragmas are translated during compilation. As such, OpenMP needs no installation.

Solid HPC background literature

J. L. Hennessy and D. A. Patterson

Computer Architectures: A Quantitative Approach

5th edition, 2012, Morgan Kaufmann, Amsterdam

T. Rauber and G. Rünger

Parallel Programming for Multicore and Cluster Systems

2nd edition, 2013, Springer Heidelberg

http://dx.doi.org/10.1007/978-3-642-37801-0

J. Reinders and J. Jeffers

High Performance Parallelism Pearls Volume One:

Multicore and Many-Core Programming Approaches

1st edition, 2014, Morgan Kaufmann

J. Jeffers and J. Reinders

High Performance Parallelism Pearls Volume Two:

Multicore and Many-Core Programming Approaches

1st edition, 2015, Morgan Kaufmann

v0.1

	Initial implementation

	POS, EPOS reading, RRNG range file parsing

	Barr et al. reconstruction, supports for up to 4.2 billion ion tips

	Generation of synthetic single-crystalline tip structures

	MPI/OpenMP thread parallelized spatial range querying and indexing tasks

	Tip surface extraction through alpha shapes to entire datasets

	Surface extraction made efficient through smart ion pruning pre-processing algorithm

	Floating point precision exact distancing of ions to the alpha shape triangle hull

	This allows to reduce bias in descriptive statistics and tessellation by excluding close to the surface ions from the analyses

	Thread parallel radial distribution function (RDF), k nearest neighbor (kNN), Ripley K

	Thread parallel 2-point descriptive spatial statistics

	In-built batch processing capability for fully automatic processing of such statistics

	Allows for arbitrary single and molecular ion type combinations

	Optional ion type label randomization

	Thread parallel maximum separation clustering method with parameter space sweeping capability

	This can also be combined with the batch processing functionality

	Thread parallel implementation of V. Araullo-Peters et al. reconstruction-space-based method for quantifying crystallographic signal through discrete Fourier analysis

	Thread parallel wrapper around C. Rycrofts Voro++ library to enable hitherho impossible computations of volume tessellations to the entire tip

	Characterize the cell volume to obtain atomic scale concentration values and topology through nearest neighbor analysis and p-vectors

	Hierarchical Data Format (HDF5) / eXtensible Data Model and Format (XDMF) powered results reporting

Beta-stage functionality

	Optional a posteriori relabeling of ions after each maximum separation clustering run to perform descriptive spatial statistics in population of remaining non-clustered ions using guard zones

Program execution

How to execute

All set? Excellent! Then, you have to prepare your environment to allow thread parallelism. First, we should allow for sufficient executable stack memory allocatability:

export ulimit -s unlimited

Making this environment modification is necessary only once upon console session startup.
Set next the OMP_NUM_THREADS and the MKL_NUM_THREADS environment variables. If sequential execution is desired use 1 for the first variable, else use a number as high as the number of physical cores. Always use 1 for the second variable. It is a common misconception that hyper-thread cores are efficiently usable cores. Rather, hyper-threading core exist in pairs. One should instruct at most one OpenMP thread per pair, as the two cores of the pair share most resources. As such, exemplifying the setting for a workstation with 36 physical hyper-threading core pairs reads as:

export OMP_NUM_THREADS=36
export MKL_NUM_THREADS=1

Now PARAPROBE can be executed via a single command line call:

mpiexec -n <nprocesses> <paraprobe> <simid> <Settings.xml>

Or equivalently:

mpirun -np <nprocesses> <paraprobe> <simid> <Settings.xml>

Please note that the angle brackets must not be typed into the command line as they only mark the input parameter!

In its current version the following input arguments are required:

	<nprocesses> How many MPI processes to utilize?

	<paraprobe> Your specific name of the executable.

	<simid> JobID, an unsigned integer to distinguish the results from runs with other settings but the same raw data.

	<Settings.xml> a properly formatted XML control file. The name can be changed as long as the file remains a properly formatted.

Be careful: if the <simid> value is set to the same value during subsequent runs in the same folder, data will be overwritten without prompting!

Report runtime diagnostics

In particular for debugging, and getting to know further information how PARAPROBE performed, it is useful to store the console prompts during execution. In order to do so execute the program as follows if working interactively:

<regular execution command as shown above> 2>&1 | tee PARAPROBE.SimID.<simid>.STDOUTERR.txt

This instruction will redirect the console output and potential error messages into a text file surplus show the results as usual on the console.
Instead,if executing as part of a batch script use:::

<regular execution command as shown above> 1>PARAPROBE.SimID.<simid>.STDOUT.txt 2>PARAPROBE.SimID.<simid>.STDERR.txt

will redirect all verbose to separate text files. One for usual output STDOUT. The other one for operating system controlled errors returned by the program STDERR. Again mind that the angular brackets should not be typed. I use them to mark the input variables

Benchmarking

PARAPROBE has internal functionality to monitor its elapsed time expenditures. After running successfully, this is summarized in the MyProfiling.csv file.

Further details of OpenMP multi-threading

Below is a typical example call which executes the program with 1 MPI process spawning 36 OpenMP threads, reads the settings from MySpecialSettings, marks all results with a consistent ID, 1000 in this case, and redirects console messages to file:

mpiexec -n 1 paraprobe 1000 MySpecialSettings.xml 1>PARAPROBE.SimID.1000.STDOUT.txt 2>PARAPROBE.SimID.1000.STDERR.txt

Please note, setting the environment variable OMP_NUM_THREADS is required only once per active console session, if not working with a different number of threads is desired. Please note above detail about Intel’s, Hyper-Threading (HT [https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html]) core pairs. They suggest that twice as many cores could be used as in reality should be. The reason is that a hyper-threading core pair is build of two cores which share most of the fastest caches. In effect, the two hyper-threading cores will fight for resources when getting assigned more than one work package. Therefore, only as many threads as
existent real physical core pairs should be instructed via the OMP_NUM_THREADS environment variable.

Manage thread affinity

Thread affinity deals with the question whether a thread, once it has been mapped on a CPU core, should always be executed on this core or may
be relocated to another in an effort to improve global system performance. In fact, if not explicitly instructed otherwise,
the operating system usually instructs such migration operations during program operation, in particular when multiple user or programs
work on the same system. Such strategy to improve global system performance, however, may not necessarily mean a performance improvement of the
actual running PARAPROBE job. Moreover, frequent thread migration reduces PARAPROBE performance owing to re-initialization costs. Namely, once a thread is instructed to migrate, its already allocated cache content will in most cases not exist on the core on which the thread had just migrated. Instead, costly refurnishing of cache content is required. For these reasons, overwriting the operating systems thread affinity policy can be worthwhile to prevent
the OS from migrating threads across the available cores. One can instruct this explicitly via setting for instance the KMP AFFINITY [https://software.intel.com/en-us/node/522691]
environment variables when using the Intel compiler or the GNU [https://gcc.gnu.org/onlinedocs/libgomp/GOMP_005fCPU_005fAFFINITY.html] thread affinity policy. PARAPROBE internally uses the NUMA [http://man7.org/linux/man-pages/man3/numa.3.html] memory allocator library to manage thread affinity.

Graphical Front End

To assist APT practitioners as much as possible in setting up PARAPROBE runs, we have developed a Python/Bokeh-based graphical user interface (GUI).
It is accessible as a Bokeh wheel through the scripts folder and enables to generate an XML control file through a browser GUI.
Its main purpose is to assist the user in generating functional, i.e. format conformant control settings file.

The user interacts with the GUI to enter the analyses of interest. The GUI parses the user input and writes a conformant XML file.
Subsequently, this file can be used to run a PARAPROBE job.

We are currently working on an integration of this GUI into a virtual machine workflow that dispatches PARAPROBE jobs to a workstation queing system. Eventually, this will constitute the world’s first fully automatized open source solution for instructing strongly scaling APT data mining operations without having the users to worry about the HPC details buzzing in the background.

[image: ../images/PARAPROBEGUI_01.png]

[image: _images/PARAPROBEFront_02.png]

PARAPROBE is an MPI/OpenMP-parallelized open source back end tool for

running strong scaling analyses of Atom Probe Tomography (APT) data.

The tool is developed by Markus [https://bigmax.iwww.mpg.de/39151/bigmax-software-engineering-consultant] Kühbach, a scientific computing Postdoc

with the Max-Planck BiGmax [https://www.bigmax.mpg.de/]’s research network at the Max-Planck Institut,

für Eisenforschung (MPIE [https://www.mpie.de]) in Düsseldorf.

Please feel free to utilize the tool. In doing so, feel equally free

to suggest me [https://www.mpie.de/person/51206/2656491] any improvements or desirable analysis features

you find useful to add into PARAPROBE.

1. Getting started

	In a nutshell
	What is PARAPROBE?

	What are the user benefits?

	Which parallelization concepts are employed?

	Solid HPC background literature

	Setup
	Which operating system is supported?

	How large datasets are supported?

	What are the minimum hardware requirements?

	Which prerequisites are necessary?

	How to compile?

	Where to place files?

	Optimization

	Troubleshooting?!

2. Utilize productively

	XML Control File Settings
	Questions?

	Input

	Analysis mode

	Reconstruction

	Tip surface reconstruction

	Analysis Tasks

	Barr et al reconstruction parameter

	Smart pruning prior surface reconstruction

	Crystallographic analysis

	Descriptive spatial statistics parameter

	Clustering analyses parameter

	Tessellation analyses

	Visualization options

	Synthetic tip

	Performance

	Program execution
	How to execute

	Report runtime diagnostics

	Benchmarking

	Further details of OpenMP multi-threading

	Manage thread affinity

3. Examples

	Video tutorials

	Contact

4. Version history

	v0.1

	Beta-stage functionality

	The project is licenced under the GNU v3.0

5. References

	The method

	Third-party contributions

	Computational geometry focused APT method development by other people

	Contact

6. Funding

The author gratefully acknowledges the support from the Deutsche

Forschungsgemeinschaft (DFG [https://www.dfg.de/]) through project BA 4253/2-1 and the

provisioning of computing resources by the Max-Planck Gesellschaft.

7. Questions, contributions

Please feel free to contact me [https://www.mpie.de/person/51206/2656491]

XML Control File Settings

The entire data mining is instructed through a single XML control settings file.

[image: _images/PARAPROBEWorkflow_02.png]

Questions?

If in doubt feel free to ask [https://bigmax.iwww.mpg.de/39151/bigmax-software-engineering-consultant] me [https://www.mpie.de/person/51206/2656491]

Input

InputFileformat

Determines where the rawdata come from

1, POS

2, EPOS

3, HDF5

4 Generate synthetic single-crystalline tip

RAWFilenameIn

Specifies the filename and ending for InputFileformat modes 1, 2, 3, and 4

Analysis mode

AnalysisMode

1, work in reconstruction space

Reconstruction

ReconstructionAlgorithm

Determines the location of the ions in the reconstruction space

1, accept x,y,z from synthetic dataset demands InputFileformat 5

2, accept x,y,z from the POS file as reconstructed already

3, accept x,y,z from the EPOS file as reconstructed already

4, perform common Barr et al. reconstruction based on EPOS file

IdentifyIonType

If other than 0, a ranging is performed based on rrng range file

Else, a default type is assigned to all ions

RRNGFilenameIn

Specifies a RRNG format conformant range file with pieces of information

for mapping mass-to-charge values to ion types (ranging)

Tip surface reconstruction

SurfaceReconstructionType

Determines whether or not and if so which tip surface reconstruction model to apply

1, alpha shape using the CGAL library

4, read existent triangle hull from SurfaceFilenameIn file

SurfaceFilenameIn

Specifies a VTK file which contains the surface triangulation

AlphaShapeAlphaValueChoice

CGAL setting to specify which alpha value is used to triangulate the shape

0, the smallest alpha to get a solid through

1, the value which CGAL considers to be the optimal

Analysis Tasks

AnalysisCrystallographicInfo

1, perform V. J. Araullo-Peters et al. method to extract

pointwise crystallographic signal by analyzing periodicity

in histogram of projected point to plane distances using

discrete Fourier transforms

Computing the FFT demands linking against the IntelMKL library

AnalysisSpatDistrType

Specifies which descriptive spatial statistics should be computed.

Multiple single character numbers can be provided to instruct

multiple analyses, eg 415 instructs multiple k nearest,

radial distribution function, and 2-point statistics,

The order of the numeral keys does not matter

1, radial distribution function

2, nearest neighbor

3, Ripley K

4, multiple k nearest neighbors

5, 2-point spatial statistics to knearest neighbors in SpatStatRadiusMax

6, discrete ion type specific numeral accounting

AnalysisVolumeTessellation

1, Computes a volume Voronoi tessellation to the entire dataset

AnalysisClusteringType

Specifies which clustering method to use

1, maximum separation method

Barr et al reconstruction parameter

Parameter in the Barr et al. reconstruction protocol

FlightLength

In nanometer, instrument dependent

AtomicDensity

In atoms per cubic nanometer

EvaporationField

In Volt per nanometer

DetEffMin

DetEffIncr

DetEffMax

Specifies range of detector efficiency minimum, increment,

maximum values, respectively, physically restricted on (0,1)

KFMin

KFIncr

KFMax

Specifies range of kf field factor minimum, increment, maximum

values, respectively

ICFMin

ICFIncr

ICFMax

Specifies range of image compression factor ICF factor

Smart pruning prior surface reconstruction

A technique to identify ions close to the tip surface to avoid downsampling yet speed up the alpha shape surface triangulation

AdvIonPruningBinWidthMin

AdvIonPruningBinWidthIncr

AdvIonPruningBinWidthMax

Specifies, in nanometer, the cuboidal binning of the tip volume used

for pruning all ions too far away from the tip surface prior to passing

the candidate points to CGAL

Values should not be smaller than 0.5 nanometer, much larger values will

reduce pruning efficiency

DebugComputeDistance

0 no distance computation to tip surface triangle hull,

will introduce bias in spatial statistics and tessellation results

1 floating point exact distancing for all ions within

SpatStatRadiusMax to the tip surface triangle hull, will eliminate bias

owing to ions too close to the dataset boundary whose region of interest

extends into vacuum and therefore contains comparably fewer ions than

for ions deeply embedded in the tip volume

Crystallographic analysis

Thread parallelized implementation of V. J. Araullo-Peters et al. reconstruction space crystallographic signal quantification method

CrystalloRadiusMax

Radius of the region of interest inspection sphere about each material point

of a sampling grid at which crystallographic signal is mined by scanning

elevation azimuth space

SamplingGridBinWidthX

SamplingGridBinWidthY

SamplingGridBinWidthZ

Defining a cuboidal sampling point grid whose vertices define positions

in the tip volume where crystallographic signal is mined

ElevationAngleMin

ElevationAngleIncr

ElevationAngleMax

AzimuthAngleMin

AzimuthAngleIncr

AzimuthAngleMax

Defines the resolution of the elevation azimuth angle space scanning about each material point

CrystalloHistM

Defines the power of two exponent of how many projected distance bins are used to compute the histogram

for which subsequently discrete 1d Fourier transforms are computed

WindowingMethod

0, rectangular window

1, Kaiser window, using scalar scaling constant WindowingAlpha

WindowingAlpha

Positive scalar scaling constant see J. Kaiser and R. W. Schafer

IEEE Transactions on Acoustics, Speech and Signal Processing, 28, 1,

1980, 105-107, 10.1109/TASSP.1980.1163349 for details

Descriptive spatial statistics parameter

DescrStatTaskCode

A semicolon-separated list of string-based ion type codes which specify which analyses on ion types are to be conducted. Each analysis task, string, requires at least one central ion type string separated by a minus sign to at least one neighboring ion type string. The individual substring keys specify individual analyses, each separated off by semicolon. For example the string code Al-Al;Ga-Ga will instruct two tasks. In the first such descriptive spatial statistics task Al is taken as central and probed against Al only neighbors. The second task probes Gallium against Gallium only. It is possible to combine multiple string codes into a semicolon separated set of arbitrary combinations of single and molecular ions. In this case ion type strings for centrals as well as neighbors are separated through comma. For example, the string code Al,Mn-Al,Mn;AlH-Ga,Mn instructs two tasks: the first accepts Al or Mn as central ions and probes against their Al or Mn neighbors. The second takes all aluminium hydride molecular ions or Gallium single ions as centrals and probes against their Gallium or Manganese neighbors.

SpatStatRadiusMin

SpatStatRadiusIncr

SpatStatRadiusMax

Specifies in nanometer the spherical region of interest radius

in which analyses about the ions are performed.

Increment needs to be an integer multiple of SpatStatRadiusMax

SpatStatKNNOrder

Specifies k for AnalysisSpatDistrType mode 4, output will use

C style reporting i.e. order 1 is reported as 0

SpatStatMKNNCode

Specifies a semicolon separated list of only non-negative integer values

which kth order nearest neighbors should be computed to the central ion,

allows to define arbitrary combinations like 1;2;5;10;100;1000,i.e.

the first, second, fifth, tenth, hundredth, and thousandth nearest neighbor

SpatStatAdditionalLabelRandomization

If set to 1 allows to randomize all ion type labels across point cloud

and re-run the clustering analysis against, otherwise no randomization is done. | Applied randomizations are reset after each task to not invalidate the data set.

Clustering analyses parameter

ClusteringTaskCode

Syntax is the same as DescrStatTaskCode, different tasks can be defined.

ClustMaxSepDmaxMin

ClustMaxSepDmaxIncr

ClustMaxSepDmaxMax

Specifies in nanometer the range and stepping of the Dmax parameter used

to perform a set of independent maximum separation clustering analyses

with different Dmax values but same Nmin.

ClustMaxSepNmin

Minimum number of ions inclusive/exclusive to consider a cluster.

ClustAPosterioriSpatStat

If 1 performs a spatial distribution analysis on the clustered ions after

the clustering analysis, this support is in beta stage

Tessellation analyses

SurfaceCellsCarvingRadius

This specifies a shell of thickness SurfaceCellsCarvingRadius in nanometer

in which cells are not computed because they are too close to the tip surface

to assure that their geometry is unaffected by the discontinuity of

of the non-periodic finite point cloud

Visualization options

If set to value 1 switched on, if set to 0 switched off
Some of the output will be written into an HDF5 file. Complementary XDMF files will
be written for visualization purposes

IOReconstruction

Write ion positions and ranging information to VTK file

IOTriangulation

Write tip surface triangle hull for visualization

IOTriangulationBVH

Write VTK file which visualizes the bounded volume hierarchy used for fast triangle location queries

IOKDTreePartitioning

Write VTK file that visualizes the aggregate of thread local KDTrees into which the ions were partitioned

IOHKFilteredIons

Write candidate ion positions and ranging information to VTK file

IOHKClusterID

Write smart pruning bin information to binary file, unsigned int x+yNX+zNXY implicitly encoded

IOIonTipSurfDistances

Write distance of ions to surface to VTK file

IOVoronoiDescrStats

Report volume and number of faces of each tessellation cell in HDF5 file but not their geometry

IOVoronoiCellPositions

Report 3D positions of each Voronoi cell linked to cell attributes

IOVoronoiTopoGeom

Report also the topology and geometry of every cell.

Mind that this takes approximately 100 Byte per cell, i.e.

the option may not be feasible to use when working with large tip volumina

as it will generate Terabyte sized results files!

IOCrystallography

Report results of V. J. Araullo-Peters method of extracting crystallographic signal

Synthetic tip

Parameter specifying geometry and size of synthetic tip. Shape is conical frustum with spherical cap on top and spherical cap cut out at the bottom.
So far the support for tip geometry is simplistic defining hardcoded single-crystalline pure Al tip with optional monodisperse Al3Sc precipitate fraction.

SimRelBottomRadius

SimRelTopRadius

SimRelBottomCapHeight

Only frustum height

SimRelTopCapHeighthttps://

All four relative to frustum height ie. restricted on 0,1

SimMatrixLatticeConstant

Currently aluminium single-crystalline pillar.

SimNumberOfAtoms

How many ions assuming full efficiency.

SimDetectionEfficiency

Fraction of NumberOfAtoms to place, sampling randomly MersenneTwister

SimFiniteSpatResolutionX

SimFiniteSpatResolutionY

SimFiniteSpatResolutionZ

Sigma parameter of normal distribution about lattice position by means of which ion is displaced about ideal position, in nanometer

SimNumberOfCluster

How many Al3Sc cluster to place in bounding box about the tip

SimClusterRadiusMean

SimClusterRadiusSigmaSqr

Lognormal distribution parameter NOT expectation value and variance for cluster size distribution, currently all cluster same size mean, in nanometer

Performance

UseNUMABinding

Optional feature. The suggestion is to switch it off by default, i.e. set any value other than 1. Instead, if switched on 1, it will instruct to use the NUMA API library to pin the threads to specific cores at runtime. This is not per se not portable across different machine topologies. Users need to inspect their machine topology first (using hwloc [https://www.open-mpi.org/projects/hwloc/] for instance) and modify the corresponding section in the source code.

The project is licenced under the GNU v3.0

Copyright Max-Planck-Institut für Eisenforschung, GmbH, Düsseldorf

Data structure, code design, parallel implementation: Markus Kühbach, 2017-2018

Original sequential MATLAB code snippets for reconstruction and

EPOS and POS file read: A. Breen, B. Gault

Third-party contributions

AABBTree by lohedges https://github.com/lohedges/aabbcc

HPDBSCAN by M. Götz, C. Bodenstein, M. Riedel https://dx.doi.org/10.1145/2834892.2834894

paraprobe — is an MPI/OpenMP/SIMD-parallel tool for efficient scalable processing

of Atom Probe Tomography (APT) data targeting back-end integration.

This file is part of paraprobe.

paraprobe is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

paraprobe is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with paraprobe. If not, see <https://www.gnu.org/licenses/>.

The method

	The method and its key implementation.

	
M. Kühbach et al.

On Strong Scaling Parallelized Open Source Tools for Mining Atom Probe Tomography Data:

Descriptive Spatial Statistics, Clustering Analyses, Atom Probe Crystallography, and Computational Geometry

in preparation for Ultramicroscopy, Q1, 2019

	Solid APT background

	
B. Gault and M. P. Moody and J. M. Cairney and S. P. Ringer

Atom Probe Microscopy

1st edition, 2012, Springer New York

https://dx.doi.org/10.1007/978-1-4614-3436-8

W. Lefebvre and F. Vurpillot and X. Sauvage

Atom Probe Tomography: Put Theory Into Practice

1st edition, 2016, Academic Press

Third-party contributions

	Thread-parallelized DBSCAN — HPDBSCAN

	
M. Götz and C. Bodenstein and M. Riedel

HPDBSCAN: highly parallel DBSCAN

MLHPC15 Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments

2015

https://dx.doi.org/10.1145/2834892.2834894

	DBScan sequential and threaded

	
M. Ester and H.-P. Kriegel and J. Sander and X. Xu

A Density-Based Algorith for Discovering Clusters in Large Spatial Databases with Noise

Proceedings of the 2nd International Conference on

Knowledge Discovery and Data Mining (KDD-96), 1996

	Maximum separation method

	
J. M. Hyde and C. A. English

An analysis of the structure of irradiation induced Cu-enriched clusters in low and high Nickel welds

Proceedings of the MRS Fall Meeting 2000: Symposium R - Microstructural Processes in Irradiated Materials

2000, Vol 650 R6.6, 6-12

https://dx.doi.org/10.1556/proc-650-r6.6

L. T. Stephenson and M. P. Moody and P. V. Liddicoat and S. P. Ringer

New techniques for the analysis of fine-scaled clustering phenomena within Atom Probe Tomography (APT) data

Microscopy & Microanalysis, 2007, Vol 13, 448-463

https://dx.doi.org/10.1017/s1431927607070900

E. A. Jaegle and P.-P. Choi and D. Raabe

The Maximum Separation Cluster Analysis Algorithm for Atom-Probe Tomography:

Parameter Determination and Accuracy

Microscopy & Microanalysis, 2014, Vol 20, 1662-1671

https://dx.doi.org/10.1017/S1431927614013294

	CGAL, the Computational Geometry Algorithms Library

	
T. K. F. Da and S. Loriot and M. Yvinec

CGAL User and Reference Manual: 3D Alpha Shapes

2017

https://doc.cgal.org/latest/Alpha_shapes_3/index.html#Chapter_3D_Alpha_Shapes

S. Hert and S. Schirra

CGAL User and Reference Manual: 3D Convex Hulls

2017

https://doc.cgal.org/latest/Convex_hull_3/index.html#Chapter_3D_Convex_Hulls

	Alpha Shapes

	
H. Edelsbrunner and E. P. Mücke

Three-Dimensional Alpha Shapes

ACM Transactions on Graphics

1994, 13, 1, 43-72

https://dx.doi.org/10.1145/174462.156635

	Voro

	
C. H. Rycroft

VORO++: A three-dimensional Voronoi cell library in C++

Chaos

2009, 19, 041111

https://dx.doi.org/10.1063/1.3215722

http://math.lbl.gov/voro++/

	Mining crystallographic signal in reconstruction space

	
V. J. Araullo-Peters, A. Breen, A. V. Ceguerra, B. Gault, S. P. Ringer, J. M. Cairney

A new systematic framework for crystallographic analysis of atom probe data

Ultramicroscopy

2015, 154, 7-14

https://dx.doi.org/10.1016/j.ultramic.2015.02.009

	AABBTree

	
Lohedges

https://github.com/lohedges/aabbcc

Computational geometry focused APT method development by other people

	Advanced Computational Geometry for APT Processing

	
P. Felfer and A. Ceguerra and S. P. Ringer and J. M. Cairney

Applying computational geometry techniques for advanced feature analysis in atom probe data

Ultramicroscopy

2013, 132, 100-106

https://dx.doi.org/10.1016/j.ultramic.2013.03.004

P. Felfer and J. Cairney

A computational geometry framework for the optimisation of atom probe reconstructions

Ultramicroscopy

2016, 169, 62-68

https://dx.doi.org/10.1016/j.ultramic.2016.07.008

	Robust predicates

	
Shewchuk, J. R.

Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates

Computational Geometry, 1997, 18, p305

https://dx.doi.org/10.1007/PL00009321

Contact

Please feel free to contact me (using my MPIE [https://www.mpie.de/person/51206/2656491] or BiGmax [https://bigmax.iwww.mpg.de/39151/bigmax-software-engineering-consultant] contact details) to identify whether PARAPROBE supplies functionalities which can cater also your analyses needs!

Setup

Which operating system is supported?

PARAPROBE is a high performance computing (HPC) back end solution for processing APT datasets. Therefore, it targets workstations and computing clusters, i.e. Linux-based operation systems. The compilation on a Windows system should in principle be technically possible, has so far, though, not been tested.

How large datasets are supported?

Currently, single APT measurements of at most 4.2 billion ions technically. Dataset sizes of 2.0 billion ions were tested thoroughly. As of 2018, such successful tip measurement are to the best of my knowledge not standard. Please contact me [https://www.mpie.de/person/51206/2656491] if you have larger datasets, I am eager to modify my code to become capable as well to handle even such higher ion counts per single measurement.

What are the minimum hardware requirements?

Memory — data mining APT datasets is 3d point data processing. Therefore, hardware minimum requirements depend primarily and necessarily on the total number of ions. Sufficient system main memory is required to hold the point data and temporary partial duplicates of it during processing. Internally, each ion is represented as a structure of three 32-bit floating point numbers surplus one 32-bit unsigned integer, hence requiring 16B per ion. Quantitative results are detailed in the initial PARAPROBE paper (see Reference section).

CPU — virtually all modern workstation and cluster computing processors are capable of executing PARAPROBE. The cost-benefit-ratio and speed of doing so may differ substantially so. Consequently, claiming minimum hardware requirements is pointless. Quantitative results (see Reference section) document better than 50% strong scaling efficiency for up to 36 threads for all analysis tasks except executing the DBScan algorithm.

GPU — PARAPROBE currently does not utilize GPU parallelism.

Which prerequisites are necessary?

PARAPROBE depends on third-party open source software and open source Linux tools. Please follow these first steps to assure you have a working system
that is capable of compiling the PARAPROBE source code, link to the libraries required, and execute.

	Check for a working installation of a C/C++ build system including cmake and make.

	You need a working installation of the Boost C++ libraries. Further details about Boost [https://www.boost.org/] here.

	A default installation of Ubuntu in at least version 17.10 provided me with the above-mentioned prerequisites.

	For Ubuntu 16.04 LTS an installation of the newest Boost version is necessary.

	PARAPROBE has been tested to compile with the GNU and the Intel Parallel Studio 2018 compiler.

	Given the fact that PARAPROBE uses the IntelMKL library, using it out of the box demands to use the Intel compiler.

	You need a working installation of an MPI_ (Message Passing Interface) API [https://www.mpich.org/downloads/] library.

	The minimum threading support level of the MPI implementation required is MPI_THREAD_FUNNELED.

	MPI libraries are not installed by default. They are available here MPICH [https://www.mpich.org/downloads] . It is recommended to use the IntelMPI library.

	PARAPROBE uses the Computational Geometry Algorithms Library (CGAL). It has own prerequisites.

	At least the two arbitrary precision arithmetic libraries GMP_ and MPFR_.

	Thus, the first step is to prepare these libraries accordingly.

	CGAL [https://doc.cgal.org/latest/Manual/installation.html] can be downloaded CGAL here [https://github.com/CGAL/cgal/releases/download/releases%2FCGAL-4.12/CGAL-4.12.tar.xz]

	Next, it suffices to activate the header-only mode of the CGAL library. Do so by modifying the line
containing enable cgal header only in the CMakeLists.txt file topmost in the CGAL code folder.

	Using the header-only library worked for me with both the CGAL version 4.11.3 and 4.12. It failed so far for 4.13.

	Within the top level CGAL code folder configure once the library by typing:

cmake -DCGAL_DIR=<CGALLocation> .

	Please note that the angle brackets must not be typed into the command line as they only mark the input parameter!

	The PARAPROBE CMakeLists.txt should now be able to use the CGAL functionalities.

	PARAPROBE utilitzes the Hierarchical Data Format (HDF5) library and the eXtensible Data Model and Format XDMF [https://www.xdmf.org/index.php/Main_Page]

	Personally, I use a local installation of the HDF5 [https://www.hdfgroup.org/solutions/hdf5/] library. This worked for me with version 1.10.2.

	I recommend to install the HDFViewer [https://www.hdfgroup.org/downloads/hdfview/] a tool for looking into the binary content of an H5 file.

	A local installation of HDF5 worked for me using the following procedure using version 1.10.2

	Starting from the PARAPROBE top level folder the Github repository contains a copy of a HDF5 source code tar archive, unpack it:

cd src/thirdparty/HDF5/CMake-hdf5-1.10.2.tar.gz
tar -xvf CMake-hdf5-1.10.2.tar.gz

	Make a local compile folder and make sure your environment has the compiler and MPI you want to use:

mkdir build
cd build

	Configure a compilation script which inspects the technical details of your system to configure HDF5:

cmake -G "Unix Makesfiles" -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DBUILD_TESTING=ON -DHDF5_BUILD_TOOLS=ON -DHDF5_BUILD_FORTRAN=OFF -DHDF5_ENABLE_Z_LIB_SUPPORT=OFF -DHDF5_ENABLE_SZIP_ENCODING=OFF ../hdf5-1.10.2

	Compile the library from the source code:

cmake --build . --config Release

	Test it on the system:

ctest . -C Release

	Pack it into an archive and complete the setting up locally:

cpack -C Release CPackConfig.cmake
./HDF5-1.10.2-Linux.sh

	For computing tessellations PARAPROBE builds on Chris Rycroft’s Voro++ (Voro [https://math.lbl.gov/voro++/]). Its source code is compilation ready within src/thirdparty/voro.

	Atom probe crystallography analyses demand discrete Fourier transform algorithms. For this PARAPROBE utilizes the Intel Math Kernel Library (IMKL [https://software.intel.com/en-us/performance-libraries]).

	For many research purposes and students the library is open source (IMKL [https://software.intel.com/en-us/performance-libraries]).

How to compile?

Once all prerequisites are met, proceed to configure and compile PARAPROBE.

	Download the source from its git repository https://github.com/mkuehbach/PARAPROBE

	
	Unpack the repository such that finally the following ends up in a single folder, from now on referred to as the root folder.

	
	a src subdirectory with the cpp and the h source code files,

	a thirdparty subdirectory with a compile-ready RapidXML, CGAL, Voro, HDF5

	a build directory for storing the executable

	a XML control file.

	a scripts subdirectory with useful tools for processing PARAPROBE results further.

	Additionally, check that there is a CMakeLists.txt file in the root folder.

	You can now rename, if you desire, the root folder to any Linux-conformant name.

	Next, utilize the top section in CMakeList.txt file to choose compiler and specify the paths as detailed.

	Next, open a console and dive into the build directory.

	If you now compile PARAPROBE for the first time type:

cmake -DCMAKE_BUILD_TYPE=Release -DCGAL_DIR=<CGALLocation> ..

	Replace <CGALLocation> by the string that specifies the absolute path where the CGAL code folder is on your system.

	Now cmake inspects your system configuration, finds compilers, libraries, which eventually results in a customized Makefile.

	Next, or if compiling not for the first time, use this makefile by initiate the compilation process:

make

	Warnings will appear but can be ignored.

	Upon success, you should now have a PARAPROBE executable with the name as specified in the CMakeLists.txt within the build.

	Use this executable to perform APT post-processing. Always a XML control file, a RRNG rangefile, and eventually POS, EPOS, or APT measurement raw data file is necessary.

Where to place files?

The resulting executable expects the XML control file always in its current location folder! Relative indexing is utilized. Other than that restriction, the executable can be renamed and relocated. This enables to script batch queues for PARAPROBE.

Optimization

If desired, adjust the level of compiler optimization via the OPTLEVEL variable in the CMakeLists.txt upper section.
OPTLEVEL “-O0” means no optimization and should be utilized for debugging purposes only, while “-O3 -march=native” is the maximum and recommended level for production tasks. Such highly compile time optimized code is not necessarily portable.
Improvements between the two extremes vary between a factor of 2 - 5 faster with maximum optimization compared to without.

Troubleshooting?!

If unrecoverable errors occur during the compilation process, attempt first to instruct a make clean command. This will delete potentially incompletely processed source code files. If this does not help: delete everything in the build folder except for the XML control file and start over with cmake -DCMAKE_BUILD_TYPE=Release -DCGAL_DIR=<CGALLocation> ...

Video tutorials

Currently in the making…

Contact

Please feel free to contact me (using my MPIE [https://www.mpie.de/person/51206/2656491] or BiGmax [https://bigmax.iwww.mpg.de/39151/bigmax-software-engineering-consultant] contact details). Whether its because you are facing problems with using PARAPROBE or want to recommend useful new features to include PARAPROBE. In case of bug reports please send always a console prompt (see how to execute section of this manual) of the simulation run and the xml input file to assist me in diagnosing the issue.

 _images/PARAPROBEFront_02.png
Scalable Parallelized Tools for I\/linig
Atom Probe Tomography Data

_images/PARAPROBEWorkflow_02.png
Settings
(=3 : Space partitioning

epos—— Import / Synthesis

mg — Ranging
vtk — ‘
1S Reconstruction

Space partitioning Surfacing using alpha shape triangulation
Volume binning

e Surfacing

hs «— Distancing

hs —— Tesseliations Distancing to triangle hull 20
H
)
v — Crystallography 5
s g
Spatial indexing 5w
£ s
csv «— Spatial statistics oo
SV — Clustering Tessellations, Atom Probe Crystallography,

oy Spatial statistics, and clustering using
Profilng thread-parallelized spatial indexing

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 <no title>

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

